Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Researc...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Research
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Long-lasting changes in the cochlear K+ recycling structures after acute energy failure

Authors: Yoichiro, Takiguchi; Guang-wei, Sun; Kaoru, Ogawa; Tatsuo, Matsunaga;

Long-lasting changes in the cochlear K+ recycling structures after acute energy failure

Abstract

Fibrocytes in the cochlear lateral wall and spiral limbus play an important role in transporting K(+) and have the capacity of self-renewal. We showed that acute energy failure in the rat cochlea induced by local administration of the mitochondrial toxin 3-nitropropionic acid (3NP) caused hearing loss in a concentration-dependent manner, mainly due to degeneration of cochlear fibrocytes. We produced long-lasting profound cochlear damage in this model by modifying the 3NP administration protocol and observed morphological changes at 16 weeks after the administration. In the spiral ligament, severe degeneration of fibrocytes was observed in the basal turn, and the levels of the Na,K-ATPase alpha and beta1 subunits and of NKCC1 were decreased in these cells, whereas connexin 26 (Cx26) level increased in the type 1 fibrocytes adjacent to the stria vascularis. In the stria vascularis, levels of Kir4.1 and L-PGDS decreased. In the spiral limbus, severe degeneration of fibrocytes was observed in the middle and basal turns, but NKCC1 and Cx26 were still found in the center of the limbus in the middle turn. These results indicate long-lasting changes in the cochlear lateral wall and spiral limbus, which may compensate for damaged K(+) recycling and protect cells from ATP shortage.

Keywords

Male, Hearing Loss, Sensorineural, Nitro Compounds, Connexins, Lipocalins, Cochlea, Rats, Connexin 26, Intramolecular Oxidoreductases, Rats, Sprague-Dawley, Kcnj10 Channel, Potassium, Animals, Solute Carrier Family 12, Member 2, Potassium Channels, Inwardly Rectifying, Propionates, Sodium-Potassium-Exchanging ATPase, Energy Metabolism, Brain Stem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average