Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2006
versions View all 3 versions

p53 Stabilization and Transactivation by a von Hippel-Lindau Protein

Authors: Roe, Jae-Seok; Kim, Hyungsoo; Lee, Soon-Min; Kim, Sung-Tae; Cho, Eun-Jung; Youn, Hong-Duk;

p53 Stabilization and Transactivation by a von Hippel-Lindau Protein

Abstract

von Hippel-Lindau (VHL) disease is a rare autosomal dominant cancer syndrome. Although hypoxia-inducible factor-alpha (HIFalpha) is a well-documented substrate of von Hippel-Lindau tumor suppressor protein (pVHL), it remains unclear whether the dysregulation of HIF is sufficient to account for de novo tumorigenesis in VHL-deleted cells. Here we found that pVHL directly associates with and stabilizes p53 by suppressing Mdm2-mediated ubiquitination and nuclear export of p53. Moreover, upon genotoxic stress, pVHL invoked an interaction between p53 and p300 and the acetylation of p53, which ultimately led to an increase in p53 transcriptional activity and p53-mediated cell cycle arrest and apoptosis. These results suggest that the tumor suppressor pVHL has an unexpected function to upregulate the tumor suppressor p53.

Related Organizations
Keywords

Transcriptional Activation, Elongin, Active Transport, Cell Nucleus, Apoptosis, Cell Cycle Proteins, Ataxia Telangiectasia Mutated Proteins, Protein Serine-Threonine Kinases, Tumor Cells, Cultured, Humans, Molecular Biology, Cell Nucleus, Lysine, Cell Cycle, Acetylation, Proto-Oncogene Proteins c-mdm2, Cell Biology, Protein Structure, Tertiary, DNA-Binding Proteins, Thermodynamics, DNA Damage, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    221
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
221
Top 10%
Top 1%
Top 1%
hybrid