Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions

Transforming Growth Factor-β1 Induces Smad3-Dependent β1 Integrin Gene Expression in Epithelial-to-Mesenchymal Transition during Chronic Tubulointerstitial Fibrosis

Authors: Yi-Chun, Yeh; Wei-Chun, Wei; Yang-Kao, Wang; Shih-Chieh, Lin; Junne-Ming, Sung; Ming-Jer, Tang;

Transforming Growth Factor-β1 Induces Smad3-Dependent β1 Integrin Gene Expression in Epithelial-to-Mesenchymal Transition during Chronic Tubulointerstitial Fibrosis

Abstract

Transforming growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) contributes to the pathophysiological development of kidney fibrosis. Although it was reported that TGF-β1 enhances β(1) integrin levels in NMuMG cells, the detailed molecular mechanisms underlying TGF-β1-induced β(1) integrin gene expression and the role of β(1) integrin during EMT in the renal system are still unclear. In this study, we examined the role of β(1) integrin in TGF-β1-induced EMT both in vitro and in vivo. TGF-β1-induced augmentation of β(1) integrin expression was required for EMT in several epithelial cell lines, and knockdown of Smad3 inhibited TGF-β1-induced augmentation of β(1) integrin. TGF-β1 triggered β(1) integrin gene promoter activity as assessed by luciferase activity assay. Both knockdown of Smad3 and mutation of the Smad-binding element to block binding to the β(1) integrin promoter markedly reduced TGF-β1-induced β(1) integrin promoter activity. Chromatin immunoprecipitation assay showed that TGF-β1 enhanced Smad3 binding to the β(1) integrin promoter. Furthermore, induction of unilateral ureteral obstruction triggered increases of β(1) integrin in both renal epithelial and interstitial cells. In human kidney with chronic tubulointerstitial fibrosis, we also found a concomitant increase of β(1) integrin and α-smooth muscle actin in tubule epithelia. Blockade of β(1) integrin signaling dampened the progression of fibrosis. Taken together, β(1) integrin mediates EMT and subsequent tubulointerstitutial fibrosis, suggesting that inhibition of β(1) integrin is a possible therapeutic target for prevention of renal fibrosis.

Keywords

Keratinocytes, Male, Chromatin Immunoprecipitation, Epithelial-Mesenchymal Transition, Integrin beta1, Blotting, Western, Apoptosis, Cell Differentiation, Kidney, Immunoenzyme Techniques, Dogs, Gene Expression Regulation, Chronic Disease, Cell Adhesion, Animals, Humans, LLC-PK1 Cells, Female, Luciferases, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    119
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
119
Top 10%
Top 10%
Top 10%
hybrid