Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Comparative Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Na+/Ca2+ exchanger-deficient mice have disorganized myofibrils and swollen mitochondria in cardiomyocytes

Authors: Toru Oka; Hisako Fujimura; Yuji Imai; Issei Komuro; Takahiro Iwamoto; Koji Wakimoto; Kinji Kobayashi; +5 Authors

Na+/Ca2+ exchanger-deficient mice have disorganized myofibrils and swollen mitochondria in cardiomyocytes

Abstract

The Na(+)/Ca(2+) exchanger (NCX1) plays a key role in maintaining Ca(2+) homeostasis in cardiomyocytes. Disruption of Ncx1 gene in mice results in embryonic lethality between embryonic day 9 and 10, with the mice lacking spontaneous heartbeats. We examined the mechanism of lack of heartbeats in Ncx1-deficient mice. Ultrastructual analysis demonstrated that Ncx1-deficient mice showed severe disorganization of myofibrils, a lack of Z-lines and swelling of mitochondria in cardiomyocytes. However, the expressions of cardiac-specific genes including transcription factor genes and contractile protein genes were not changed in Ncx1-deficient mice. Abnormal Ca(2+) handling itself or the lack of heartbeats due to the inactivation of Ncx1 gene may cause the disorganization of myofibrillogenesis. Although NCX1 protein levels were decreased in heterozygous mice, there were no changes in NCX2 and NCX3 protein levels between wild type and heterozygous mice.

Keywords

Mice, Knockout, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Brain, Heart, Embryo, Mammalian, Kidney, Sodium-Calcium Exchanger, Mitochondria, Mice, Gene Expression Regulation, Myofibrils, Animals, Myocytes, Cardiac, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average