Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Menin Suppresses Osteoblast Differentiation by Antagonizing the AP-1 Factor, JunD

Authors: Junko Naito; Hiroshi Kaji; Hideaki Sowa; Toshitsugu Sugimoto; Geoffrey N. Hendy; Kazuo Chihara;

Menin Suppresses Osteoblast Differentiation by Antagonizing the AP-1 Factor, JunD

Abstract

Mice null for menin, the product of the multiple endocrine neoplasia type 1 (MEN1) gene, exhibit cranial and facial hypoplasia suggesting a role for menin in bone formation. We have shown previously that menin is required for the commitment of multipotential mesenchymal stem cells into the osteoblast lineage in part by interacting with the bone morphogenetic protein (BMP)-2 signaling molecules Smad1/5, and the key osteoblast transcriptional regulator, Runx2 (Sowa H., Kaji, H., Hendy, G. N., Canaff, L., Komori, T., Sugimoto, T., and Chihara, K. (2004) J. Biol. Chem. 279, 40267-40275). However, menin inhibits the later differentiation of committed osteoblasts. The activator protein-1 (AP-1) transcription factor, JunD, is expressed in osteoblasts and has been shown to interact with menin in other cell types. Here, we examined the consequences of menin-JunD interaction on osteoblast differentiation in mouse osteoblastic MC3T3-E1 cells. JunD expression, assessed by immunoblot, gradually increased during osteoblast differentiation. Stable expression of JunD enhanced expression of the differentiation markers, Runx2, type 1 collagen (COL1), and osteocalcin (OCN) and alkaline phosphatase (ALP) activity and mineralization. Hence, JunD promotes osteoblast differentiation. In MC3T3-E1 cells in which menin expression was reduced by stable menin antisense DNA transfection, JunD levels were increased. When JunD and menin were co-transfected in MC3T3-E1 cells, they co-immunoprecipitated. JunD overexpression increased the transcriptional activity of an AP-1 luciferase reporter construct, and this activity was reduced by co-transfection of menin. Therefore, JunD and menin interact both physically and functionally in osteoblasts. Furthermore, menin overexpression inhibited the ALP activity induced by JunD. In conclusion, the data suggest that menin suppresses osteoblast maturation, in part, by inhibiting the differentiation actions of JunD.

Related Organizations
Keywords

DNA, Complementary, Osteoblasts, Proto-Oncogene Proteins c-jun, Blotting, Western, Bone Morphogenetic Protein 2, Cell Differentiation, Oligonucleotides, Antisense, Alkaline Phosphatase, Blotting, Northern, Cell Line, Mice, Proto-Oncogene Proteins, Bone Morphogenetic Proteins, Animals, Humans, Immunoprecipitation, RNA, Luciferases, Plasmids, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
gold