Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEssaysarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEssays
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
BioEssays
Article . 2003
versions View all 2 versions

Epigenomic replication: Linking epigenetics to DNA replication

Authors: Adrian J, McNairn; David M, Gilbert;

Epigenomic replication: Linking epigenetics to DNA replication

Abstract

AbstractThe information contained within the linear sequence of bases (the genome) must be faithfully replicated in each cell cycle, with a balance of constancy and variation taking place over the course of evolution. Recently, it has become clear that additional information important for genetic regulation is contained within the chromatin proteins associated with DNA (the epigenome). Epigenetic information also must be faithfully duplicated in each cell cycle, with a balance of constancy and variation taking place during the course of development to achieve differentiation while maintaining identity within cell lineages. Both the genome and the epigenome are synthesized at the replication fork, so the events occurring during S‐phase provide a critical window of opportunity for eliciting change or maintaining existing genetic states. Cells discriminate between different states of chromatin through the activities of proteins that selectively modify the structure of chromatin. Several recent studies report the localization of certain chromatin modifying proteins to replication forks at specific times during S‐phase. Since transcriptionally active and inactive chromosome domains generally replicate at different times during S‐phase, this spatiotemporal regulation of chromatin assembly proteins may be an integral part of epigenetic inheritance. BioEssays 25:647–656, 2003. © 2003 Wiley Periodicals, Inc.

Related Organizations
Keywords

DNA Replication, Genome, Models, Genetic, Heterochromatin, Animals, Humans, Replication Origin, Chromatin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
141
Top 10%
Top 10%
Top 1%