Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Physiology
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor‐dependent long‐term potentiation

Authors: Taverna, FA; Georgiou, J; McDonald, RJ; Hong, NS; Karev, A; Salter, MW; Takeshima, H; +2 Authors

Defective place cell activity in nociceptin receptor knockout mice with elevated NMDA receptor‐dependent long‐term potentiation

Abstract

There is growing evidence that NMDA receptor‐dependent long‐term potentiation (LTP) in the hippocampus mediates the synaptic plasticity that underlies spatial learning and memory. LTP deficiencies correlate well with spatial memory deficits and LTP enhancements may improve spatial memory. In addition, LTP deficiencies are associated with abnormal place cells as expected from the spatial mapping hypothesis of hippocampal function. In contrast, nothing is known on how enhanced NMDA receptor‐dependent LTP affects place cells. To address this question we recorded place cells from mice lacking the nociceptin receptor (NOP1/ORL1/OP4) that have enhanced hippocampal LTP. We found that the enhanced LTP was mediated by NMDA receptors, did not require L‐type calcium channels, and occurred only when high frequency tetanizing stimulus trains were used. Place cells in nociceptin receptor knockout mice were abnormal in several ways: they were less stable, had noisier positional firing patterns, larger firing fields and higher discharge rates inside and outside the firing fields. Our results suggest that excessive LTP can cause subnormal hippocampal place cell function. The effects of LTP enhancement on place cell function may therefore also depend on molecular details of synaptic plasticity, including the relationship between stimulus frequency and synaptic strength, and not merely on the magnitude of synaptic strength increases. The data have important clinical implications on development of strategies to improve cognitive function.

Keywords

Male, Mice, Knockout, Neuronal Plasticity, Calcium Channels, L-Type, Long-Term Potentiation, 610, Action Potentials, Hippocampus, Receptors, N-Methyl-D-Aspartate, Nociceptin Receptor, Electrophysiology, Mice, Organ Culture Techniques, Space Perception, Receptors, Opioid, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
bronze