Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events

Authors: Andrea N, Ladd; Thomas A, Cooper;

Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events

Abstract

Embryonic lethal abnormal vision (ELAV) type RNA binding protein 3 (ETR-3; also called NAPOR, CUGBP2, or BRUNOL3) has been implicated in the regulation of nuclear and cytoplasmic RNA processing events, including alternative splicing, RNA editing, stability and translation. Here, we report that the ETR-3 protein contains multiple regions that control its subcellular localization and are important for its activity as a splicing regulator. We cloned ETR-3 from chicken heart and fused it to the C terminus of green fluorescent protein (GFPcETR3vL). GFPcETR3vL is found predominantly in the nucleus and is an active regulator of alternative splicing in cotransfection assays with a cardiac troponin T minigene. ETR-3 contains two N-terminal RNA recognition motifs (RRMs), a 210-amino acid divergent domain, and a C-terminal RRM. We demonstrate that the C terminus contains a strong nuclear localization signal overlapping the third RRM, which can confer nuclear localization on a normally cytoplasmic pyruvate kinase chimera. Additional deletions revealed nuclear localization and export activities in the divergent domain of ETR-3, as well as regions within the first two RRMs that are important for cytoplasmic localization. The nuclear export activity of the divergent domain is sensitive to leptomycin B, indicating that export to the cytoplasm is mediated via a CRM1-dependent pathway. The C terminus and a region within the divergent domain were also shown to be important for splicing activity of ETR-3. This is the first characterization of protein domains involved in mediating the subcellular localization and splicing activity of a member of the CELF family of RNA processing regulators.

Related Organizations
Keywords

Cytoplasm, Base Sequence, Molecular Sequence Data, RNA-Binding Proteins, Alternative Splicing, Animals, Amino Acid Sequence, Cloning, Molecular, RNA Processing, Post-Transcriptional, Chickens, DNA Primers, Subcellular Fractions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid