Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Cell ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Cell Biology
Article . 1995 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domains.

Authors: A Ayme-Southgate; M L Pardue; Guy M. Benian; R Southgate; Judith D. Saide;

Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bent locus product) contain functional kinase domains.

Abstract

In Drosophila, the large muscle protein, projectin, has very different localizations in synchronous and asynchronous muscles, suggesting that projectin has different functions in different muscle types. The multiple projectin isoforms are encoded by a single gene; however they differ significantly in size (as detected by gel mobility) and show differences in some peptide fragments, presumably indicating alternative splicing or termination. We now report additional sequence of the projectin gene, showing a kinase domain and flanking regions highly similar to equivalent regions of twitchin, including a possible autoinhibitory region. In spite of apparent differences in function, all isoforms of projectin have the kinase domain and all are capable of autophosphorylation in vitro. The projectin gene is in polytene region 102C/D where the bentD phenotype maps. The recessive lethality of bentD is associated with a breakpoint that removes sequence of the projectin kinase domain. We find that different alleles of the highly mutable recessive lethal complementation group, l(4)2, also have defects in different parts of the projectin sequence, both NH2-terminal and COOH-terminal to the bentD breakpoint. These alleles are therefore renamed as alleles of the bent locus. Adults heterozygous for projectin mutations show little, if any, effect of one defective gene copy, but homozygosity for any of the defects is lethal. The times of death can vary with allele. Some alleles kill the embryos, others are larval lethal. These molecular studies begin to explain why genetic studies suggested that l(4)2 was a complex (or pseudoallelic) locus.

Related Organizations
Keywords

Sequence Homology, Amino Acid, Molecular Sequence Data, Phosphotransferases, Muscle Proteins, Catalysis, Drosophila melanogaster, Animals, Genes, Lethal, Amino Acid Sequence, Phosphorylation, Conserved Sequence, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Average
Top 10%
Top 10%
bronze