Stress-Induced Phosphorylation of PACT Reduces Its Interaction with TRBP and Leads to PKR Activation
doi: 10.1021/bi200104h
pmid: 21526770
Stress-Induced Phosphorylation of PACT Reduces Its Interaction with TRBP and Leads to PKR Activation
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.
- University of South Carolina United States
- University of South Carolina System United States
Base Sequence, RNA-Binding Proteins, Enzyme Activation, Viral Proteins, eIF-2 Kinase, Two-Hybrid System Techniques, HIV-1, Humans, Phosphorylation, DNA Primers, HeLa Cells, Protein Binding
Base Sequence, RNA-Binding Proteins, Enzyme Activation, Viral Proteins, eIF-2 Kinase, Two-Hybrid System Techniques, HIV-1, Humans, Phosphorylation, DNA Primers, HeLa Cells, Protein Binding
12 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).62 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
