Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Signaling in stem cell niches: lessons from theDrosophilagermline

Authors: D. Leanne Jones; Margaret T. Fuller; Yukiko M. Yamashita;

Signaling in stem cell niches: lessons from theDrosophilagermline

Abstract

Stem cells are cells that, upon division, can produce new stem cells as well as daughter cells that initiate differentiation along a specific lineage. Studies using the Drosophila germline as a model system have demonstrated that signaling from the stem cell niche plays a crucial role in controlling stem cell behavior. Surrounding support cells secrete growth factors that activate signaling within adjacent stem cells to specify stem cell self-renewal and block differentiation. In addition, cell-cell adhesion between stem cells and surrounding support cells is important for holding stem cells close to self-renewal signals. Furthermore, a combination of localized signaling and autonomously acting proteins might polarize stem cells in such a way as to ensure asymmetric stem cell divisions. Recent results describing stem cell niches in other adult stem cells, including hematopoietic and neural stem cells, have demonstrated that the features characteristic of stem cell niches in Drosophila gonads might be conserved.

Related Organizations
Keywords

Male, Neurons, Stem Cells, Ovary, Cell Polarity, Cell Differentiation, Extracellular Matrix, Testis, Cell Adhesion, Animals, Drosophila, Female, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    179
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
179
Top 10%
Top 1%
Top 1%
bronze