Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2008 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Cellular Proteins PML and Daxx Mediate an Innate Antiviral Defense Antagonized by the Adenovirus E4 ORF3 Protein

Authors: Amanda J, Ullman; Patrick, Hearing;

Cellular Proteins PML and Daxx Mediate an Innate Antiviral Defense Antagonized by the Adenovirus E4 ORF3 Protein

Abstract

ABSTRACT The adenovirus (Ad) E4 ORF3 protein is both necessary and sufficient to reorganize a nuclear subdomain, the PML nuclear body (PML-NB), from punctate structures into elongated nuclear tracks. PML-NB disruption is recapitulated by a variety of DNA viruses that encode proteins responsible for compromising PML-NB integrity through different mechanisms. PML-NB disruption has been correlated with the antagonism of both innate and intrinsic immune responses. The E4 ORF3 protein is required for adenoviral DNA replication in the interferon (IFN)-induced antiviral state. This may reflect the fact that PML itself, in addition to several other PML-NB proteins, is encoded by an interferon-stimulated gene. Here, we demonstrate that reorganization of the PML-NB by E4 ORF3 antagonizes an innate antiviral response mediated by both PML and Daxx. Reduction of either of these proteins is sufficient to restore the replicative capacity of virus with the E4 ORF3 protein deleted in the IFN-induced antiviral state. Further, we provide evidence that both the HSV1 ICP0 and HCMV IE1 proteins, which disrupt PML-NBs by mechanistically distinct strategies, behave in a manner functionally analogous to E4 ORF3 with respect to antagonizing the IFN-induced antiviral state. In addition, we assert that this innate antiviral strategy mediated by PML and Daxx does not involve transcriptional repression. While early gene transcription is modestly diminished in the absence of E4 ORF3 protein expression, this reduction does not affect early protein function. We propose that, in addition to its ability to repress gene expression, the PML-NB participates in additional innate immune activities.

Related Organizations
Keywords

Cell Nucleus, Tumor Suppressor Proteins, Ubiquitin-Protein Ligases, Cytomegalovirus, Nuclear Proteins, Promyelocytic Leukemia Protein, Adenoviridae, Cell Line, Immediate-Early Proteins, Interferon-gamma, Viral Proteins, Chlorocebus aethiops, Animals, Humans, Co-Repressor Proteins, Gene Deletion, Adaptor Proteins, Signal Transducing, Adenovirus E4 Proteins, Molecular Chaperones, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
gold