Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2000
Data sources: Radboud Repository
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Radboud Repository
Article . 2000
Data sources: Radboud Repository
The Journal of Immunology
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Neutralization of IL-18 Reduces Neutrophil Tissue Accumulation and Protects Mice Against Lethal Escherichia coli and Salmonella typhimurium Endotoxemia

Authors: Netea, M.G.; Fantuzzi, G.; Kullberg, B.J.; Stuyt, R.J.L.; Pulido, E.J.; McIntyre, R.C.; Joosten, L.A.B.; +2 Authors

Neutralization of IL-18 Reduces Neutrophil Tissue Accumulation and Protects Mice Against Lethal Escherichia coli and Salmonella typhimurium Endotoxemia

Abstract

Abstract In addition to stimulating IFN-γ synthesis, IL-18 also possesses inflammatory effects by inducing synthesis of the proinflammatory cytokines TNF and IL-1β and the chemokines IL-8 and macrophage inflammatory protein-1α. We hypothesized that neutralization of IL-18 would have a beneficial effect in lethal endotoxemia in mice. IL-1β converting enzyme (ICE)-deficient mice, lacking the ability to process mature IL-18 and IL-1β, were completely resistant to lethal endotoxemia induced by LPS derived from either Escherichia coli or Salmonella typhimurium. In contrast, both wild-type and IL-1β−/− mice were equally susceptible to the lethal effects of LPS, implicating that absence of mature IL-18 or IFN-γ but not IL-1β in ICE−/− mice is responsible for this resistance. However, IFN-γ-deficient mice were not resistant to S. typhimurium LPS, suggesting an IFN-γ-independent role for IL-18. Anti-IL-18 Abs protected mice against a lethal injection of either LPS. Anti-IL-18 treatment also reduced neutrophil accumulation in liver and lungs. The increased survival was accompanied by decreased levels of IFN-γ and macrophage inflammatory protein-2 in anti-IL-18-treated animals challenged with E. coli LPS, whereas IFN-γ and TNF concentrations were decreased in treated mice challenged with S. typhimurium. In conclusion, neutralization of IL-18 during lethal endotoxemia protects mice against lethal effects of LPS. This protection is partly mediated through inhibition of IFN-γ production, but mechanisms involving decreased neutrophil-mediated tissue damage due to the reduction of either chemokines (E. coli LPS) or TNF (S. typhimurium LPS) synthesis by anti-IL-18 treatment may also be involved.

Keywords

Lipopolysaccharides, Salmonella typhimurium, Neutrophils, The effect of modulation of endogenous cytokines on resistance to infection, Interferon-gamma, Mice, Cell Movement, Animals, Lung, Escherichia coli Infections, Peroxidase, Mice, Knockout, Salmonella Infections, Animal, Tumor Necrosis Factor-alpha, Immune Sera, Interleukin-18, Endotoxemia, Het effect van modulatie van endogene cytokinen op weerstand tegen infecties, Mice, Inbred C57BL, Liver, Chemokines, Injections, Intraperitoneal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    203
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
203
Top 10%
Top 1%
Top 1%
bronze