Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Massac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS Genetics
Article . 2012
Data sources: DOAJ
versions View all 4 versions

The CPEB Protein Orb2 Has Multiple Functions during Spermatogenesis in Drosophila melanogaster

Authors: Xu, Shuwa; Hafer, Nathaniel; Agunwamba, Blessing; Schedl, Paul;

The CPEB Protein Orb2 Has Multiple Functions during Spermatogenesis in Drosophila melanogaster

Abstract

Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are translational regulators that can either activate or repress translation depending on the target mRNA and the specific biological context. There are two CPEB subfamilies and most animals have one or more genes from each. Drosophila has a single CPEB gene, orb and orb2, from each subfamily. orb expression is only detected at high levels in the germline and has critical functions in oogenesis but not spermatogenesis. By contrast, orb2 is broadly expressed in the soma; and previous studies have revealed important functions in asymmetric cell division, viability, motor function, learning, and memory. Here we show that orb2 is also expressed in the adult male germline and that it has essential functions in programming the progression of spermatogenesis from meiosis through differentiation. Like the translational regulators boule (bol) and off-schedule (ofs), orb2 is required for meiosis and orb2 mutant spermatocytes undergo a prolonged arrest during the meiotic G2-M transition. However, orb2 differs from boule and off-schedule in that this arrest occurs at a later step in meiotic progression after the synthesis of the meiotic regulator twine. orb2 is also required for the orderly differentiation of the spermatids after meiosis is complete. The differentiation defects in orb2 mutants include abnormal elongation of the spermatid flagellar axonemes, a failure in individualization and improper post-meiotic gene expression. Amongst the orb2 differentiation targets are orb and two other mRNAs, which are transcribed post-meiotically and localized to the tip of the flagellar axonemes. Additionally, analysis of a partial loss of function orb2 mutant suggests that the orb2 differentiation phenotypes are independent of the earlier arrest in meiosis.

Keywords

Male, 570, *Transcription Factors, QH426-470, Biochemistry, Molecular Genetics, *mRNA Cleavage and Polyadenylation Factors, Genetics, Animals, Drosophila Proteins, Developmental, *Drosophila melanogaster, UMCCTS funding, Spermatogenesis, Translational Medical Research, mRNA Cleavage and Polyadenylation Factors, Gene Expression Regulation, Developmental, RNA-Binding Proteins, Cell Differentiation, Cellular and Molecular Physiology, Meiosis, Drosophila melanogaster, Germ Cells, Gene Expression Regulation, *Drosophila Proteins, Mutation, Eukaryotic Initiation Factor-4G, Research Article, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Green
gold