Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1998 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 1998
versions View all 4 versions

LMA1 Binds to Vacuoles at Sec18p (NSF), Transfers upon ATP Hydrolysis to a t-SNARE (Vam3p) Complex, and Is Released during Fusion

Authors: Xu, Zuoyu; Sato, Ken; Wickner, William;

LMA1 Binds to Vacuoles at Sec18p (NSF), Transfers upon ATP Hydrolysis to a t-SNARE (Vam3p) Complex, and Is Released during Fusion

Abstract

Vacuole fusion requires Sec18p (NSF), Sec17p (alpha-SNAP), Ypt7p (GTP binding protein), Vam3p (t-SNARE), Nyv1p (v-SNARE), and LMA1 (low Mr activity 1, a heterodimer of thioredoxin and I(B)2). LMA1 requires Sec18p for saturable, high-affinity binding to vacuoles, and Sec18p "priming" ATPase requires both Sec17p and LMA1. Either the sec18-1 mutation and deletion of I(B)2, or deletion of both I(B)2 and p13 (an I(B)2 homolog) causes a striking synthetic vacuole fragmentation phenotype. Upon Sec18p ATP hydrolysis, LMA1 transfers to (and stabilizes) a Vam3p complex. LMA1 is released from vacuoles in a phosphatase-regulated reaction. This LMA1 cycle explains how priming by Sec18p is coupled to t-SNARE stabilization and to fusion.

Related Organizations
Keywords

Adenosine Triphosphatases, Saccharomyces cerevisiae Proteins, Microcystins, Biochemistry, Genetics and Molecular Biology(all), Qa-SNARE Proteins, Hydrolysis, Molecular Sequence Data, Membrane Proteins, Saccharomyces cerevisiae, Phosphoproteins, Membrane Fusion, Peptides, Cyclic, Fungal Proteins, Adenosine Triphosphate, Mutation, Phosphoprotein Phosphatases, Marine Toxins, Amino Acid Sequence, Enzyme Inhibitors, Glycoproteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Average
Top 10%
Top 1%
hybrid