Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Genetics
Article . 1991 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Choosing a cell fate: a view from the Notch locus

Authors: S, Artavanis-Tsakonas; P, Simpson;

Choosing a cell fate: a view from the Notch locus

Abstract

During the development of Drosophila melanogaster, individual cells must make choices between a restricted set of possible fates in order to give rise to spatial patterns composed of different types of differentiated cells. The Notch locus appears to play a central and general role in the regulative events that control the local architecture of the final cellular pattern in several tissues, among them being the central and peripheral nervous systems.

Keywords

Receptors, Notch, Mosaicism, Embryonic Development, Membrane Proteins, Cell Differentiation, Epistasis, Genetic, Receptors, Cell Surface, Nervous System, Feedback, Embryonic and Fetal Development, Drosophila melanogaster, Gene Expression Regulation, Genes, Insect Hormones, Ectoderm, Animals, Drosophila Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    196
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
196
Top 10%
Top 1%
Top 1%