Differential role of APP and APLPs for neuromuscular synaptic morphology and function
pmid: 24998676
Differential role of APP and APLPs for neuromuscular synaptic morphology and function
The analysis of mouse models indicated that APP and the related APLPs are important for synapse formation and function. The synaptic role of APP is, however, complex due to partially overlapping functions within the gene family. APP/APLPs are proteolytically cleaved and have both adhesive and signaling properties. Mice lacking individual APP family members are viable, whereas APP/APLP2 and APLP1/APLP2 double knockout (DKO) mice die shortly after birth. Here, we analyzed the morphology of the neuromuscular junction (NMJ) of lethal APLP1/APLP2-DKO mice in comparison to lethal APP/APLP2-DKO mutants and viable single KO mice. We report that, surprisingly, the NMJ phenotype of APLP1/APLP2-DKO mice shows striking differences as compared to APP/APLP2-DKO mice. Unexpectedly, APLP1/APLP2-DKO mice exhibit normal endplate patterning and lack presynaptic nerve terminal sprouting. However, at the level of individual synapses we show that APLP1/APLP2-DKO mice exhibit reduced size of pre- and postsynaptic compartments and reduced colocalization. As APP/APLP2-DKO and APLP1/APLP2-DKO mice show similar penetrance of early postnatal lethality, this suggests that deficits at the level of individual synapses due to impaired synaptic apposition and/or deficits in transmitter release may cause lethality. Using an in vitro cell-adhesion assay, we observed that APP trans-dimerization is considerably less efficient than APLP2 trans-interaction. Thus, differences between APP/APLP2 and APP/APLP1 NMJ formation may be in part explained by differences in APP/APLP2 trans-dimerization properties. Collectively, our study further highlights the distinct and essential role of APLP2 at NMJ synapses that cannot be compensated by APP.
Mice, Knockout, Analysis of Variance, Chi-Square Distribution, Body Weight, Diaphragm, Neuromuscular Junction, Synapsins, Models, Biological, Peptide Fragments, Mice, Inbred C57BL, Amyloid beta-Protein Precursor, Mice, Gene Expression Regulation, Spinal Cord, Animals, Receptors, Cholinergic
Mice, Knockout, Analysis of Variance, Chi-Square Distribution, Body Weight, Diaphragm, Neuromuscular Junction, Synapsins, Models, Biological, Peptide Fragments, Mice, Inbred C57BL, Amyloid beta-Protein Precursor, Mice, Gene Expression Regulation, Spinal Cord, Animals, Receptors, Cholinergic
26 Research products, page 1 of 3
- 2018IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).49 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
