Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Mutations in Saccharomyces cerevisiae Iron-Sulfur Cluster Assembly Genes and Oxidative Stress Relevant to Cu,Zn Superoxide Dismutase

Authors: Laran T, Jensen; Raylene J, Sanchez; Chandra, Srinivasan; Joan Selverstone, Valentine; Valeria Cizewski, Culotta;

Mutations in Saccharomyces cerevisiae Iron-Sulfur Cluster Assembly Genes and Oxidative Stress Relevant to Cu,Zn Superoxide Dismutase

Abstract

Saccharomyces cerevisiae lacking Cu,Zn superoxide dismutase (SOD1) show several metabolic defects including aerobic blockages in methionine and lysine biosynthesis. We have previously shown that mutations in genes implicated in the formation of iron-sulfur clusters, designated seo (suppressors of endogenous oxidation), reverse the oxygen-dependent methionine and lysine auxotrophies of a sod1Delta strain. We now report the surprising finding that seo mutants do not reduce oxidative damage as shown by the lack of reduction of EPR-detectable "free" iron, which is characteristic of sod1Delta mutants. In fact, they exhibit increased oxidative damage as evidenced by increased accumulation of protein carbonyls. The seo class of mutants overaccumulates mitochondrial iron, and this iron accumulation is critical for suppression of the sod1Delta biosynthetic defects. Blocking overaccumulation of mitochondrial iron abolished the ability of the seo mutants to suppress the sod1Delta auxotrophies. By contrast, increasing the mitochondrial iron content of sod1Delta yeast using high copy MMT1, which encodes a mitochondrial iron transporter, was sufficient to mimic the seo mutants. Our studies indicated that suppression of the sod1Delta methionine auxotrophy was dependent on the pentose phosphate pathway, which is a major source of NADPH production. By comparison, the sod1Delta lysine auxotrophy appears to be reversed in the seo mutants by increased expression of genes in the lysine biosynthetic pathway, perhaps through sensing of mitochondrial damage by the retrograde response.

Related Organizations
Keywords

Cell Nucleus, Iron-Sulfur Proteins, Dose-Response Relationship, Drug, Reverse Transcriptase Polymerase Chain Reaction, Superoxide Dismutase, Iron, Lysine, Electron Spin Resonance Spectroscopy, Saccharomyces cerevisiae, Carbon, Mitochondria, Oxygen, Oxidative Stress, Methionine, Mutation, RNA, Messenger, Plasmids, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%
gold