Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Copper-dependent Autocleavage of Glypican-1 Heparan Sulfate by Nitric Oxide Derived from Intrinsic Nitrosothiols

Authors: Kan Ding; Mattias Belting; Katrin Mani; Lars-Åke Fransson; Fang Cheng;

Copper-dependent Autocleavage of Glypican-1 Heparan Sulfate by Nitric Oxide Derived from Intrinsic Nitrosothiols

Abstract

Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 371-376). Increased polyamine uptake correlates with an increased number of positively charged N-unsubstituted glucosamine units in the otherwise polyanionic heparan sulfate chains of glypican-1. During intracellular recycling of glypican-1, there is an NO-dependent deaminative cleavage of heparan sulfate at these glucosamine units, which would eliminate the positive charges (Ding, K., Sandgren, S., Mani, K., Belting, M., and Fransson, L.-A. (2001) J. Biol. Chem. 276, 46779-46791). Here, using both biochemical and microscopic techniques, we have identified and isolated S-nitrosylated forms of glypican-1 as well as slightly charged glypican-1 glycoforms containing heparan sulfate chains rich in N-unsubstituted glucosamines. These glycoforms were converted to highly charged species upon treatment of cells with 1 mm l-ascorbate, which releases NO from nitrosothiols, resulting in deaminative cleavage of heparan sulfate at the N-unsubstituted glucosamines. S-Nitrosylation and subsequent deaminative cleavage were abrogated by inhibition of a Cu(2+)/Cu(+) redox cycle. Under cell-free conditions, purified S-nitrosylated glypican-1 was able to autocleave its heparan sulfate chains when NO release was triggered by l-ascorbate. The heparan sulfate fragments generated in cells during this autocatalytic process contained terminal anhydromannose residues. We conclude that the core protein of glypican-1 can slowly accumulate NO as nitrosothiols, whereas Cu(2+) is reduced to Cu(+). Subsequent release of NO results in efficient deaminative cleavage of the heparan sulfate chains attached to the same core protein, whereas Cu(+) is oxidized to Cu(2+).

Related Organizations
Keywords

Ions, Microscopy, Confocal, S-Nitrosothiols, Cell-Free System, Nitric Oxide, Models, Biological, Catalysis, Protein Structure, Tertiary, Up-Regulation, Microscopy, Fluorescence, Tumor Cells, Cultured, Humans, Protein Isoforms, Chromatography, High Pressure Liquid, Copper, Heparan Sulfate Proteoglycans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
gold