Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

SUMOylation of the Corepressor N-CoR Modulates Its Capacity to Repress Transcription

Authors: Tiefenbach, J.; Novac, N.; Ducasse, M.; Eck, M.; Melchior, Frauke; Heinzel, T.;

SUMOylation of the Corepressor N-CoR Modulates Its Capacity to Repress Transcription

Abstract

In the absence of ligands the corepressor N-CoR mediates transcriptional repression by some nuclear hormone receptors. Several protein–protein interactions of N-CoR are known, of which mainly complex formation with histone deacetylases (HDACs) leads to the repression of target genes. On the other hand, the role of posttranslational modifications in corepressor function is not well established. Here, we show that N-CoR is modified by Sumo-1. We found SUMO-E2–conjugating enzyme Ubc9 and SUMO-E3 ligase Pias1 as novel N-CoR interaction partners. The SANT1 domain of N-CoR was found to mediate this interaction. We show that K152, K1117, and K1330 of N-CoR can be conjugated to SUMO and that mutation of all sites is necessary to fully block SUMOylation in vitro. Because these lysine residues are located within repression domains I and III, respectively, we investigated a possible correlation between the functions of the repression domains and SUMOylation. Coexpression of Ubc9 protein resulted in enhanced N-CoR–dependent transcriptional repression. Studies using SUMOylation-deficient N-CoR RDI mutants suggest that SUMO modification contributes to repression by N-CoR. Mutation of K152 to R in RD1, for example, not only significantly reduced repression of a reporter gene, but also abolished the effect of Ubc9 on transcriptional repression.

Related Organizations
Keywords

Transcription, Genetic, Ubiquitin-Conjugating Enzyme UBC9, SUMO-1 Protein, Nuclear Proteins, Protein Inhibitors of Activated STAT, Protein Structure, Tertiary, Repressor Proteins, Mice, Mucoproteins, Two-Hybrid System Techniques, Mutation, Ubiquitin-Conjugating Enzymes, Animals, Nuclear Receptor Co-Repressor 1, Amino Acid Sequence, Protein Modification, Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Green
bronze