Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Protein Kinase Cα Mediates Erlotinib Resistance in Lung Cancer Cells

Authors: Mahlet B. Abera; Marcelo G. Kazanietz;

Protein Kinase Cα Mediates Erlotinib Resistance in Lung Cancer Cells

Abstract

Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment.

Related Organizations
Keywords

Epithelial-Mesenchymal Transition, Lung Neoplasms, Protein Kinase C-alpha, Down-Regulation, Up-Regulation, ErbB Receptors, Erlotinib Hydrochloride, Drug Resistance, Neoplasm, Transforming Growth Factor beta, Cell Line, Tumor, Mutation, Quinazolines, Humans, Protein Kinase Inhibitors, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Average
Top 10%
bronze
Related to Research communities
Cancer Research