Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Diabe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study

Authors: Hidenori Koyama; Tetsuya Yamamoto; Manabu Kadoya; Masaaki Inaba; Hirokazu Okazaki; Yuji Moriwaki; Akinori Kanzaki; +7 Authors

Plasma leptin level is associated with cardiac autonomic dysfunction in patients with type 2 diabetes: HSCAA study

Abstract

It has been shown that visceral fat accumulation is associated with autonomic dysfunction, though the precise mechanism remains unclear. A recent basic study found that leptin can directly modulate autonomic function through the dorsomedial hypothalamus in relation to obesity. Here, we investigated the mutual relationships among plasma leptin, visceral fat accumulation, and cardiac autonomic dysfunction in patients with type 2 diabetes.This cross-sectional study included 100 diabetic patients, and 100 age- and gender-matched non-diabetic patients with cardiovascular risk factors. Plasma leptin and soluble leptin receptor levels, visceral fat area (VFA), and heart rate variability (HRV) were determined in addition to classical cardiovascular risk factors.In the type 2 diabetic patients, VFA was significantly (p < 0.05) and inversely associated with HRV parameters (SDNN: r = -0.243; SDANN5: r = -0.238), while the plasma level of leptin, but not soluble leptin receptor, was also significantly (p < 0.05) and inversely associated with HRV parameters (SDNN: r = -0.243; SDANN5: r = -0.231). Multiple regression analysis showed that plasma leptin was significantly associated with SDNN and SDANN5 independent of other factors, including age, gender, presence of hypertension and dyslipidemia, duration of diabetes, HbA1c, and eGFR. Furthermore, the relationship of leptin with SDNN and SDANN5 (β = -0.279 and -0.254, respectively) remained significant (p < 0.05) after adjustment for VFA. In patients without diabetes, no significant associations were observed between leptin and any of the HRV parameters.Hyperleptinemia may be involved in cardiac autonomic dysfunction in patients with type 2 diabetes and visceral obesity.

Keywords

Leptin, Male, Heart Diseases, Endocrinology, Diabetes and Metabolism, Intra-Abdominal Fat, Autonomic Nervous System, Heart Rate, Humans, Obesity, Original Investigation, Adiposity, Aged, Chi-Square Distribution, Heart, Middle Aged, Cross-Sectional Studies, Diabetes Mellitus, Type 2, Case-Control Studies, Multivariate Analysis, Receptors, Leptin, Female, Cardiology and Cardiovascular Medicine, Biomarkers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
Green
gold