Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biomedicinesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedicines
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biomedicines
Article . 2022
Data sources: DOAJ
versions View all 5 versions

Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke–Blackburn–Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria

Authors: Alexander Sapegin; Elizaveta Rogacheva; Lyudmila Kraeva; Maxim Gureev; Marine Dogonadze; Tatiana Vinogradova; Petr Yablonsky; +3 Authors

Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke–Blackburn–Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria

Abstract

A chemically diverse set of 13 5-nitrofuran-tagged heterocyclic compounds has been prepared via the Groebke–Blackburn–Bienaymé multicomponent reaction. The testing of these compounds against the so-called ESKAPE panel of pathogens identified an apparent lead compound—N-cyclohexyl-2-(5-nitrofuran-2-yl)imidazo[1,2-a]pyridine-3-amine (4a)—which showed an excellent profile against Enterobacter cloacae, Staphylococcus aureus, Klebsiella pneumoniae, and Enterococcus faecalis (MIC 0.25, 0.06, 0.25 and 0.25 µg/mL, respectively). Its antibacterial profile and practically convenient synthesis warrant further pre-clinical development. Certain structure-activity relationships were established in the course of this study which were rationalized by the flexible docking experiments in silico. The assessment of antitubercular potential of the compounds synthesized against drug sensitive H37v strain of Mycobacterium tuberculosis revealed little potential of the imidazo-fused products of the Groebke–Blackburn–Bienaymé multicomponent reaction as chemotherapeutic agents against this pathogen.

Keywords

antimycobacterial activity, antibacterial testing, QH301-705.5, Groebke–Blackburn–Bienaymé multicomponent reaction, imidazo-fused azines and azoles, ESKAPE pathogens, 5-nitrofurancarboxaldehyde, Biology (General), Groebke–Blackburn–Bienaymé multicomponent reaction; imidazo-fused azines and azoles; 5-nitrofurancarboxaldehyde; ESKAPE pathogens; antibacterial testing; antimycobacterial activity; flexible docking; strained ligand-protein interactions, Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
gold
Related to Research communities