Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana

Authors: Weiqi, Li; Ruiping, Wang; Maoyin, Li; Lixia, Li; Chuanming, Wang; Ruth, Welti; Xuemin, Wang;

Differential Degradation of Extraplastidic and Plastidic Lipids during Freezing and Post-freezing Recovery in Arabidopsis thaliana

Abstract

Changes in membrane lipid composition play important roles in plant adaptation to and survival after freezing. Plant response to cold and freezing involves three distinct phases: cold acclimation, freezing, and post-freezing recovery. Considerable progress has been made toward understanding lipid changes during cold acclimation and freezing, but little is known about lipid alteration during post-freezing recovery. We previously showed that phospholipase D (PLD) is involved in lipid hydrolysis and Arabidopsis thaliana freezing tolerance. This study was undertaken to determine how lipid species change during post-freezing recovery and to determine the effect of two PLDs, PLDalpha1 and PLDdelta, on lipid changes during post-freezing recovery. During post-freezing recovery, hydrolysis of plastidic lipids, monogalactosyldiacylglycerol and plastidic phosphatidylglycerol, is the most prominent change. In contrast, during freezing, hydrolysis of extraplastidic phospholipids, phosphatidylcholine and phosphatidylethanolamine, occurs. Suppression of PLDalpha1 decreased phospholipid hydrolysis and phosphatidic acid production in both the freezing and post-freezing phases, whereas ablation of PLDdelta increased lipid hydrolysis and phosphatidic acid production during post-freezing recovery. Thus, distinctly different changes in lipid hydrolysis occur in freezing and post-freezing recovery. The presence of PLDalpha1 correlates with phospholipid hydrolysis in both freezing and post-freezing phases, whereas the presence of PLDdelta correlates with reduced lipid hydrolysis during post-freezing recovery. These data suggest a negative role for PLDalpha1 and a positive role for PLDdelta in freezing tolerance.

Related Organizations
Keywords

Spectrometry, Mass, Electrospray Ionization, Arabidopsis Proteins, Hydrolysis, Arabidopsis, Phosphatidic Acids, Lipids, Models, Biological, Tandem Mass Spectrometry, Freezing, Mutation, Phospholipase D, Cluster Analysis, Plastids, Phospholipids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    140
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
140
Top 1%
Top 10%
Top 10%
gold