Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Basel:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
edoc
Thesis . 2014
Data sources: edoc
https://dx.doi.org/10.5451/uni...
Other literature type . 2014
Data sources: Datacite
versions View all 2 versions

Rabaptin5 is recruited to endosomes by Rab4a and Rabex5 to regulate endosome maturation

Authors: Kälin, Simone;

Rabaptin5 is recruited to endosomes by Rab4a and Rabex5 to regulate endosome maturation

Abstract

Membrane trafficking between organelles is fundamental to the existence of eukaryotic cells. A multitude of proteins is involved in membrane trafficking, acting as building blocks for transport carriers, regulators of transport, and targeting and fusion factors. One important group of regulators are the Rab GTPases. They serve as multifaceted organizers of almost all membrane trafficking related processes in eukaryotic cells. In their active state, Rab proteins bind to effectors to mediate their function. One of these effector proteins is Rabaptin5, an early endosome protein with binding sites for Rab4, Rab5, the Rab5 GDP/GTP exchange factor Rabex5, as well as for the clathrin coat adaptor AP1. Rabaptin5 is considered to be the prototype of a Rab effector mediating a positive feedback loop by binding to active Rab5 and bringing along Rabex5, which activates further Rab5, thus maintaining endosomal fusion activity. Via the separate Rab4 interaction domain, Rabaptin5 has been proposed to function as a molecular linker between Rab5 and Rab4 to coordinate endocytic and recycling traffic. In the present study, we analysed the function of Rabaptin5 in more detail by mutagenesis of the different interaction domains or motifs and expression of the mutant proteins in HeLa cells. We identified two independent Rab4 binding domains in the N-terminal half of the protein and two cooperating sequences binding to Rab5a. Deletion of the Rab4 and Rabex5 binding domains, respectively, abolished endosome recruitment of Rabaptin5 mutants. Inactivation of Rab4a and Rabex5 by siRNA-mediated silencing, respectively, completely prevented membrane binding of wildtype Rabaptin5, confirming the requirement for Rab4a and Rabex5 and excluding indirect structural effects of the deletions. Interestingly, deletion of either one of the two Rab5 binding domains showed no effect on endosome recruitment, but induced giant endosomes positive for markers of early endosomes like Rab4a, Rab5a, and transferrin, but also for the late endosomal markers Rab7a and the ESCRT component CHMP2B, suggesting the formation of early/late endosomal chimeras. The complete disruption of the Rabaptin5/Rab5a interaction produced giant endosomes with only late endosomal properties. Our results clearly contradict the widely accepted feedback model, in which Rab5 controls its own activity. They rather indicate that Rabaptin5 is recruited to endosomes by Rab4a-GTP and Rabex5, which locally activates Rab5a by nucleotide exchange. At the same time, activated Rab5a appears to inhibit or moderate Rabaptin5 driven endosome maturation, since deletion of the Rab5 binding domains on Rabaptin5 induces a premature maturation process. The mechanism of Rabaptin5 driven endosome maturation remains to be clarified by further investigation.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green