Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse

Authors: Scicluna, Brendon P.; Tanck, Michael W. T.; Remme, Carol Ann; Beekman, Leander; Coronel, Ruben; Wilde, Arthur A. M.; Bezzina, Connie R.;

Quantitative trait loci for electrocardiographic parameters and arrhythmia in the mouse

Abstract

Cardiac arrhythmias associated with sudden death are influenced by multiple biological pathways and are modulated by numerous genetic and environmental factors. Elevated heart rate and prolonged ECG indices of conduction and repolarization have been associated with risk of sudden death. Insight into the genetic underpinnings of these parameters thus provides an important means to the dissection of the genetic components modulating risk of sudden cardiac death. In this study we mapped quantitative trait loci (QTL) modulating heart rate, ECG indices of conduction and repolarization, and susceptibility to arrhythmia, in a conduction disease-sensitized F(2) mouse population. Heart rate, P-duration, PR-, QRS- and QT-interval were measured at baseline (n=502) and after flecainide administration (n=370) in mutant F(2) progeny (F(2)-MUT) resulting from the FVB/NJ-Scn5a1798(insD/+) X 129P2-Scn5a1798(insD/+) mouse cross. Episodes of sinus arrhythmia and ventricular tachyarrhythmia occurring post-flecainide were treated as binary traits. F(2)-MUT mice were genotyped using a genome-wide 768 single nucleotide polymorphism (SNP) panel. Interval mapping uncovered multiple QTL for ECG parameters and arrhythmia. A sex-interacting scan identified QTL displaying sex-dependency, and a two-dimensional QTL scan unmasked locus-locus (epistasis) interactions influencing ECG traits. A number of QTL coincided at specific chromosomal locations, suggesting pleiotropic effects at these loci. Through transcript profiling in myocardium from the parental mouse strains we identified genes co-localizing at the identified QTL that constitute highly relevant candidates for the observed effects. The detection of QTL influencing ECG indices and arrhythmia is an essential step towards identifying genetic networks for sudden, arrhythmic, cardiac death.

Related Organizations
Keywords

Multifactorial Inheritance, Mice, 129 Strain, Genotype, Quantitative Trait Loci, Chromosome Mapping, Arrhythmias, Cardiac, Mice, Transgenic, Polymorphism, Single Nucleotide, Mice, Mutant Strains, Electrocardiography, Mice, Haplotypes, Heart Rate, Models, Animal, Animals, Regression Analysis, Genetic Predisposition to Disease, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%