Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 1995
versions View all 2 versions

Expression analysis of the ataxin–1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals

Authors: A, Servadio; B, Koshy; D, Armstrong; B, Antalffy; H T, Orr; H Y, Zoghbi;

Expression analysis of the ataxin–1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals

Abstract

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat which codes for glutamine in the protein ataxin-1. We have investigated the effect of this expansion on ataxin-1 by immunoblot analysis. The wild-type protein is detected in both normal and affected individuals; however, a mutant protein which varies in its migration properties according to the size of the CAG repeat is detected in cultured cells and tissues from SCA1 individuals. The protein has a nuclear localization in all normal and SCA1 brain regions examined but a cytoplasmic localization of ataxin-1 was also observed in cerebellar Purkinje cells. Our data show that in SCA1, the expanded alleles are faithfully translated into proteins of apparently normal stability and distribution.

Keywords

Cell Nucleus, Male, Cytoplasm, Glutamine, Immunoblotting, Brain, Nuclear Proteins, Nerve Tissue Proteins, Immunohistochemistry, Cerebellar Cortex, Mice, Purkinje Cells, Ataxins, Gene Expression Regulation, Animals, Humans, Female, Lymphocytes, Ataxin-1, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    300
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
300
Top 1%
Top 1%
Top 1%