Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2010 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2010
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

Syntaxin 4 Is Required for Acid Sphingomyelinase Activity and Apoptotic Function

Authors: C. Perrotta; L. Bizzozero; D. Cazzato; S. Morlacchi; E. Assi; F. Simbari; Y. Zhang; +4 Authors

Syntaxin 4 Is Required for Acid Sphingomyelinase Activity and Apoptotic Function

Abstract

Acid sphingomyelinase (A-SMase) is an important enzyme in sphingolipid metabolism and plays key roles in apoptosis, immunity, development, and cancer. In addition, it mediates cytotoxicity of cisplatin and some other chemotherapeutic drugs. The mechanism of A-SMase activation is still undefined. We now demonstrate that, upon CD95 stimulation, A-SMase is activated through translocation from intracellular compartments to the plasma membrane in an exocytic pathway requiring the t-SNARE protein syntaxin 4. Indeed, down-regulation of syntaxin 4 inhibits A-SMase translocation and activation induced by CD95 stimulation. This leads to inhibition of the CD95-triggered signaling events, including caspase 3 and 9 activation and apoptosis, activation of the survival pathway involving the protein kinase Akt, and important changes in cell cycle and proliferation. The molecular interaction between A-SMase and syntaxin 4 was not known and clarifies the mechanism of A-SMase activation. The novel actions of syntaxin 4 in sphingolipid metabolism and exocytosis we describe here define signaling mechanisms of broad relevance in cell pathophysiology.

Keywords

NITRIC-OXIDE; DENDRITIC CELLS; T-LYMPHOCYTES; LIPID RAFTS; CERAMIDE;, Caspase 3, Qa-SNARE Proteins, Cell Membrane, Medizin, Apoptosis, U937 Cells, Caspase 9, Exocytosis, Sphingomyelins, Enzyme Activation, Protein Transport, Sphingomyelin Phosphodiesterase, Humans, fas Receptor, Proto-Oncogene Proteins c-akt

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
gold