Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Sustainable Chem...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions

Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array

Authors: Maha Alafeef; Ketan Dighe; Parikshit Moitra; Dipanjan Pan;

Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array

Abstract

The latest epidemic of extremely infectious coronavirus disease 2019 (COVID-19) has created a significant public health concern. Despite substantial efforts to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific location, shortcomings in the surveillance of predominantly asymptomatic infections constrain attempts to identify the epidemiological spread of the virus. Continuous surveillance of wastewater streams, including sewage, offers opportunities to track the spread of SARS-CoV-2, which is believed to be found in fecal waste. To demonstrate the feasibility of SARS-CoV-2 detection in wastewater systems, we herein present a novel facilely constructed fluorescence sensing array based on a panel of three different lanthanide-doped carbon nanoparticles (LnCNPs). The differential fluorescence response pattern due to the counterion-ligand interactions allowed us to employ powerful pattern recognition to effectively detect SARS-CoV-2 and differentiate it from other viruses or bacteria. The sensor results were benchmarked to the gold standard RT-qPCR, and the sensor showed excellent sensitivity (1.5 copies/μL) and a short sample-to-results time of 15 min. This differential response of the sensor array was also explained from the differential mode of binding of the LnCNPs with the surface proteins of the studied bacteria and viruses. Therefore, the developed sensor array provides a cost-effective, community diagnostic tool that could be potentially used as a novel epidemiologic surveillance approach to mitigate the spread of COVID-19.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
bronze