Dopamine modulates von Willebrand factor secretion in endothelial cells via D2–D4 receptors
pmid: 16839358
Dopamine modulates von Willebrand factor secretion in endothelial cells via D2–D4 receptors
von Willebrand factor (VWF) is acutely released from endothelial cells in response to numerous calcium-raising agents (e.g. thrombin, histamine) and cAMP-raising agents (e.g. epinephrine, adenosine, vasopressin). In contrast, very few inhibitors of endothelial VWF secretion have been described. The neurotransmitter dopamine is a modulator of exocytosis in several endocrine cells, and is possibly involved in the regulation of several endothelial cell functions. We therefore investigated the effect of dopamine on endothelial VWF secretion.Dopamine, D2/D3- and D4-specific agonists inhibited histamine- but not thrombin-induced VWF secretion. Expression of dopamine D2, D3 and D4 receptors was demonstrated by reverse transcription polymerase chain reaction (RT-PCR) in both human aortic (HAEC) and umbilical vein (HUVEC) endothelial cells. D2-D4 agonists did not inhibit histamine-induced rise in [Ca(2+)](i): they inhibited histamine-induced secretion even in the absence of extracellular calcium. Thus, the dopamine effects are not mediated by [Ca(2+)](i)-dependent signalling. D2/D3- and D4-specific agonists inhibited neither the rise in cAMP nor VWF secretion in response to epinephrine and adenosine, arguing against an effect on cAMP-mediated signalling. D1 and D5 receptors were not detected in HAEC or HUVEC by RT-PCR, and the D1/D5-specific agonist SKF 38 393 failed to modulate VWF secretion, arguing against a role for these receptors in endothelial exocytosis.Dopamine inhibits histamine-induced endothelial exocytosis by activating D2-D4 receptor, via a mechanism distinct from [Ca(2+)](i)-or cAMP-mediated signaling. In contrast, D1 and D5 receptors are not functionally expressed in cultured endothelial cells. Dopamine agonists may be useful as inhibitors of endothelial activation in inflammation and cardiovascular disease.
- University of Geneva Switzerland
Umbilical Veins, Receptors, Dopamine D2, Dopamine, Receptors, Dopamine D4, Receptors, Dopamine D3, Endothelial Cells, Exocytosis, Receptors, Dopamine, Dopamine Agonists, von Willebrand Factor, Humans, Endothelium, Vascular, Aorta, Cells, Cultured, Histamine, Signal Transduction
Umbilical Veins, Receptors, Dopamine D2, Dopamine, Receptors, Dopamine D4, Receptors, Dopamine D3, Endothelial Cells, Exocytosis, Receptors, Dopamine, Dopamine Agonists, von Willebrand Factor, Humans, Endothelium, Vascular, Aorta, Cells, Cultured, Histamine, Signal Transduction
71 Research products, page 1 of 8
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).27 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
