Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACS Omegaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2020 . Peer-reviewed
License: Standard ACS AuthorChoice/Editors’ Choice Usage Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article
License: acs-specific: authorchoice/editors choice usage agreement
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACS Omega
Article . 2020
Data sources: DOAJ
versions View all 4 versions

Insight into Ginkgo biloba L. Extract on the Improved Spatial Learning and Memory by Chemogenomics Knowledgebase, Molecular Docking, Molecular Dynamics Simulation, and Bioassay Validations

Authors: Yan Chen; Zhiwei Feng; Mingzhe Shen; Weiwei Lin; Yuanqiang Wang; Siyi Wang; Caifeng Li; +4 Authors

Insight into Ginkgo biloba L. Extract on the Improved Spatial Learning and Memory by Chemogenomics Knowledgebase, Molecular Docking, Molecular Dynamics Simulation, and Bioassay Validations

Abstract

Epilepsy is a common cause of serious cognitive disorders and is known to have impact on patients' memory and executive functions. Therefore, the development of antiepileptic drugs for the improvement of spatial learning and memory in patients with epileptic cognitive dysfunction is important. In the present work, we systematically predicted and analyzed the potential effects of Ginkgo terpene trilactones (GTTL) on cognition and pathologic changes utilizing in silico and in vivo approaches. Based on our established chemogenomics knowledgebase, we first conducted the network systems pharmacology analysis to predict that ginkgolide A/B/C may target 5-HT 1A, 5-HT 1B, and 5-HT 2B. The detailed interactions were then further validated by molecular docking and molecular dynamics (MD) simulations. In addition, status epilepticus (SE) was induced by lithium-pilocarpine injection in adult Wistar male rats, and the results of enzyme-linked immunosorbent assay (ELISA) demonstrated that administration with GTTL can increase the expression of brain-derived neurotrophic factor (BDNF) when compared to the model group. Interestingly, recent studies suggest that the occurrence of a reciprocal involvement of 5-HT receptor activation along with the hippocampal BDNF-increased expression can significantly ameliorate neurologic changes and reverse behavioral deficits in status epilepticus rats while improving cognitive function and alleviating neuronal injury. Therefore, we evaluated the effects of GTTL (bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C) on synergistic antiepileptic effect. Our experimental data showed that the spatial learning and memory abilities (e.g., electroencephalography analysis and Morris water maze test for behavioral assessment) of rats administrated with GTTL were significantly improved under the middle dose (80 mg/kg, GTTL) and high dose (160 mg/kg, GTTL). Moreover, the number of neurons in the hippocampus of the GTTL group increased when compared to the model group. Our studies showed that GTTL not only protected rat cerebral hippocampal neurons against epilepsy but also improved the learning and memory ability. Therefore, GTTL may be a potential drug candidate for the prevention and/or treatment of epilepsy.

Related Organizations
Keywords

Chemistry, QD1-999

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green
gold