Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1984 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 Da: analysis of sequence differences between type I and type II keratins.

Authors: P M, Steinert; D A, Parry; E L, Racoosin; W W, Idler; A C, Steven; B L, Trus; D R, Roop;

The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 Da: analysis of sequence differences between type I and type II keratins.

Abstract

We present the complete nucleotide and deduced amino acid sequences of a mouse epidermal keratin subunit of 60,000 Da. The keratin possesses a central alpha-helical domain of four tracts (termed 1A, 1B, 2A, and 2B) that can form coiled-coils, interspersed by short linker sequences, and has non-alpha-helical terminal domains. This pattern of secondary structure is emerging as common to all intermediate filament subunits. The alpha-helical sequences conform to the type II class of keratins. Accordingly, this is the first type II keratin for which complete sequence information is available, and thus it facilitates elucidation of the fundamental distinctions between type I and type II keratins. It has been observed that type I keratins are acidic and type II keratins are neutral--basic in charge. We suggest that the basis for this empirical correlation between type and charge resides in the respective net charges of the 1A and 2B tracts. Calculations on interchain interactions between charged residues in the alpha-helical domains indicate that this keratin prefers to participate in dimers according to an in-register parallel arrangement. The terminal domains of this keratin possess characteristic glycine-rich sequences, and the carboxyl-terminal domain is highly homologous to that of a human epidermal keratin of 56,000 Da. According to the hypothesis that end-domains are located on the periphery of keratin filaments, we conclude that the corresponding mouse and human keratins are closely related, both structurally and functionally.

Keywords

Base Composition, Base Sequence, Protein Conformation, DNA, DNA Restriction Enzymes, Molecular Weight, Mice, Animals, Newborn, Genes, Animals, Keratins, Amino Acid Sequence, RNA, Messenger, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 10%
Top 1%
Top 1%
bronze