Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Genetic Deletion of the A 1 Adenosine Receptor Limits Myocardial Ischemic Tolerance

Authors: Reichelt, Melissa E; Willems, Laura; Molina, Jose G; Sun, C X; Noble, J C C; Ashton, K J; Schnermann, J; +2 Authors

Genetic Deletion of the A 1 Adenosine Receptor Limits Myocardial Ischemic Tolerance

Abstract

Adenosine receptors may be important determinants of intrinsic ischemic tolerance. Genetically modified mice were used to examine effects of global A 1 adenosine receptor (A 1 AR) knockout (KO) on function and ischemic tolerance in perfused mouse hearts. Baseline contractile function and heart rate were unaltered by A 1 AR KO, which was shown to abolish the negative chronotropic effects of 2-chloroadenosine (A 1 AR-mediated) without altering A 2 adenosine receptor–mediated coronary dilation. Tolerance to 25 minutes global normothermic ischemia (followed by 45 minutes reperfusion) was significantly limited by A 1 AR KO, with impaired contractile recovery (reduced by ≈25%) and enhanced lactate dehydrogenase (LDH) efflux (increased by ≈100%). Functional effects of A 1 AR KO involved worsened systolic pressure development with little to no change in diastolic dysfunction. In contrast, cardiac specific A 1 AR overexpression enhanced ischemic tolerance with a primary action on diastolic dysfunction. Nonselective receptor agonism (10 μmol/L 2-chloroadenosine) protected wild-type and also A 1 AR KO hearts (albeit to a lesser extent), implicating protection via subtypes additional to A 1 ARs. However, A 1 AR KO abrogated effects of 2-chloroadenosine on ischemic contracture and diastolic dysfunction. These data are the first demonstrating global deletion of the A 1 AR limits intrinsic myocardial resistance to ischemia. Data indicate the function of intrinsically activated A 1 ARs appears primarily to be enhancement of postischemic contractility and limitation of cell death.

Keywords

Adenosine, Receptor, Adenosine A1, A1 adenosine receptor, Myocardial Ischemia, Clinical sciences, Mice, Inbred Strains, Myocardial Reperfusion, 1314 Physiology, In Vitro Techniques, Cardiovascular medicine and haematology, Gene knockout, 2705 Cardiology and Cardiovascular Medicine, Mice, Inbred C57BL, Mice, Ischemia, Reperfusion, Ischemic Preconditioning, Myocardial, Animals, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
bronze