Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 1992 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 1993
versions View all 2 versions

Mouse microtubule-associated protein 4 (MAP4) transcript diversity generated by alternative polyadenylation

Authors: R J, Code; J B, Olmsted;

Mouse microtubule-associated protein 4 (MAP4) transcript diversity generated by alternative polyadenylation

Abstract

Mouse microtubule-associated protein 4 (MAP4) is a protein that co-locates with microtubules in vivo. It is encoded by a single-copy gene that expresses multiple transcripts in most cell types [West et al., J. Biol. Chem. 266 (1991) 21886-21896]. This report describes the identification of two distinct 3'-untranslated regions (UTR) for MAP4 transcripts. The 3'-UTRs of the transcripts are identical up to the site of polyadenylation of the shorter mRNA. The longer transcript contains an additional 775 nucleotides after the first polyadenylation site. Both poly(A) tails follow the canonical polyadenylation site motif, AAUAAA. These data show that two different UTRs arise as a result of alternative polyadenylation site usage. Northern blots of RNA from different tissues probed with coding sequence show hybridization to the common 5.5- and 6.5-kb transcripts, whereas blots probed with sequence unique to the longer 3'-UTR show hybridization only to the 6.5-kb band. Both transcripts are found within the same cell type. In addition, muscle contains additional transcripts of 8 and 9 kb, of which only the 9-kb transcript hybridizes to the longer 3'-UTR probe.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, Molecular Sequence Data, Genetic Variation, DNA, Blotting, Northern, Mice, Protein Biosynthesis, Animals, RNA, Messenger, Poly A, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average