Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 1988 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 1988
versions View all 2 versions

A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces

Authors: Y H, Lee; B F, Chen; S Y, Wu; W M, Leu; J J, Lin; C W, Chen; S C, Lo;

A trans-acting gene is required for the phenotypic expression of a tyrosinase gene in Streptomyces

Abstract

The melanin locus (melC) from Streptomyces antibioticus was previously shown to be composed of two open reading frames (ORFs), melC1 and melC2. The melC2 ORF codes for the polypeptide chain of tyrosinase (apotyrosinase). The function of melC1 is not known except that insertional mutation within it abolishes the tyrosinase activity. Here, we show that in Streptomyces lividans TK64 harboring melC1 mutated and melC2 intact (melC1- melC2+) plasmids, while there was no tyrosinase activity, melC transcript was synthesized and apotyrosinase could be detected. The apotyrosinase could be activated to a limited degree by incubation with copper ions, or by mixing the mycelial extract from a culture harboring a melC1- melC2+ (pPF950) plasmid with that from a culture containing a melC1+ melC2- (pSA1) plasmid. Complementation analysis showed that melC1 acted in trans on the tyrosinase gene expression. Together, these results suggest that melC1 encodes or regulates a copper-transfer protein serving an in vivo copper-donor function in the biosynthesis of active tyrosinase.

Keywords

Transcription, Genetic, Monophenol Monooxygenase, Nucleic Acid Hybridization, DNA Restriction Enzymes, Streptomyces, Phenotype, Genes, Genes, Bacterial, Mutation, Catechol Oxidase, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%