Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Toxicolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Toxicology
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Aryl hydrocarbon receptor-mediated regulation of the human estrogen and bile acid UDP-glucuronosyltransferase 1A3 gene

Authors: Sandra Kalthoff; Michael P. Manns; Thomas J. Erichsen; Ursula Ehmer; Christian P. Strassburg; Tim O. Lankisch; Peter A. Münzel; +2 Authors

Aryl hydrocarbon receptor-mediated regulation of the human estrogen and bile acid UDP-glucuronosyltransferase 1A3 gene

Abstract

UDP-glucuronosyltransferases contribute to the detoxification of drugs by forming water soluble beta-D-glucopyranosiduronic acids. The human UGT1A3 protein catalyzes the glucuronidation of estrogens, bile acids and xenobiotics including non-steroidal anti-inflammatory drugs and lipid lowering drugs. Regulation of UGT1A3 by xenobiotic response elements is likely, but the responsible elements are yet uncharacterized. In addition, genetic promoter variants may affect UGT1A3 regulation and potential induction by xenobiotics. The UGT1A3 promoter was analyzed by mutagenesis, reporter gene, and mobility shift analyses. Three hundred and eighty-nine blood donors were genotyped for promoter single nucleotide polymorphisms (SNPs) showing an allelic frequency of 42% of variants at -66 (T to C) and -204 (A to G). A xenobiotic response element regulating aryl hydrocarbon receptor (AhR)-mediated UGT1A3 transcription was identified and characterized. UGT1A3 transcription was reduced in the presence of promoter SNPs. These data demonstrate xenobiotic induced regulation of the UGT1A3 gene by the AhR, which shows genetic variability.

Keywords

Genotype, Reverse Transcriptase Polymerase Chain Reaction, Estrogens, Polymorphism, Single Nucleotide, Gene Expression Regulation, Enzymologic, Xenobiotics, Bile Acids and Salts, Liver, Receptors, Aryl Hydrocarbon, Genes, Reporter, Mutagenesis, Humans, Hepatocyte Nuclear Factor 1-alpha, Glucuronosyltransferase, 5' Untranslated Regions, Luciferases, Alleles, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%