Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2007 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Regulation of Skeletal Muscle Sarcomere Integrity and Postnatal Muscle Function by Mef2c

Authors: James A. Richardson; John McAnally; Michael Arnold; Eric N. Olson; Matthew J. Potthoff; Rhonda S Bassel-Duby;

Regulation of Skeletal Muscle Sarcomere Integrity and Postnatal Muscle Function by Mef2c

Abstract

Myocyte enhancer factor 2 (MEF2) transcription factors cooperate with the MyoD family of basic helix-loop-helix (bHLH) transcription factors to drive skeletal muscle development during embryogenesis, but little is known about the potential functions of MEF2 factors in postnatal skeletal muscle. Here we show that skeletal muscle-specific deletion of Mef2c in mice results in disorganized myofibers and perinatal lethality. In contrast, neither Mef2a nor Mef2d is required for normal skeletal muscle development in vivo. Skeletal muscle deficient in Mef2c differentiates and forms normal myofibers during embryogenesis, but myofibers rapidly deteriorate after birth due to disorganized sarcomeres and a loss of integrity of the M line. Microarray analysis of Mef2c null muscles identified several muscle structural genes that depend on MEF2C, including those encoding the M-line-specific proteins myomesin and M protein. We show that MEF2C directly regulates myomesin gene transcription and that loss of Mef2c in skeletal muscle results in improper sarcomere organization. These results reveal a key role for Mef2c in maintenance of sarcomere integrity and postnatal maturation of skeletal muscle.

Keywords

Sarcomeres, Base Sequence, MEF2 Transcription Factors, Molecular Sequence Data, Muscle Fibers, Skeletal, Muscle Proteins, Embryo, Mammalian, Mice, Mutant Strains, Mice, Animals, Newborn, Gene Expression Regulation, Myogenic Regulatory Factors, COS Cells, Chlorocebus aethiops, Animals, Connectin, Muscle, Skeletal, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    187
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
187
Top 1%
Top 10%
Top 10%
bronze