Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Thermopla...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions

Polypropylene-based conducting nanocomposites

Effect of aspect ratio of second conducting filler on the electrical percolation
Authors: BTS Ramanujam; S Radhakrishnan; SD Deshpande;

Polypropylene-based conducting nanocomposites

Abstract

Powder-mixed polypropylene (PP)–graphite binary composites exhibit an electrical percolation threshold at 10 wt% graphite signifying insulator-semiconductor transition. Three conducting fillers such as carbon black (CB), sonicated expanded graphite (s-ExGr), and carbon nanofiber (CNF) are mixed with PP-7 wt% graphite binary composites. The electrical percolation threshold has been found to have inverse relation to the aspect ratio of second conducting fillers in hybrid composites. The aspect ratio of second conducting fillers varies in the order CB < ExGr < CNF. The electrical percolation threshold is found to vary for the hybrid composites as 2.2 wt% for CB addition, 0.75 wt% for ExGr addition, and 0.2 wt% for CNF addition in the PP-7 wt% graphite binary composites. When the aspect ratio of second conducting fillers increases, they reduce the barrier for the charge transport. The second conducting fillers occupy the interspace of graphite and alternating current studies show that the effective dielectric constant increases with the concentration of second conducting filler in the hybrid composites. The composites are characterized by transmission electron microscopy and scanning electron microscopy. Melt-crystallized PP-7 wt% graphite-CNF composites exhibit higher percolation threshold due to decrease in the polymer viscosity which increases the interparticulate distance.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average