Powered by OpenAIRE graph

Expression and interaction of two compound heterozygous distal renal tubular acidosis mutants of kidney anion exchanger 1 in epithelial cells

Authors: Emmanuelle, Cordat; Reinhart A F, Reithmeier;

Expression and interaction of two compound heterozygous distal renal tubular acidosis mutants of kidney anion exchanger 1 in epithelial cells

Abstract

Kidney AE1 (kAE1) is a glycoprotein responsible for the electroneutral exchange of chloride for bicarbonate, promoting the reabsorption of bicarbonate into the blood by α-intercalated cells of the collecting tubule. Mutations occurring in the gene encoding kAE1 can induce defects in urinary acidification resulting in distal renal tubular acidosis (dRTA). We expressed two kAE1 dRTA mutants, A858D, a mild dominant mutation, and ΔV850, a recessive mutation, in epithelial Madin-Darby canine kidney (MDCK) cells. Individuals heterozygous with wild-type (WT) kAE1 either did not display any symptoms of dRTA (ΔV850/WT) or displayed a mild incomplete form of dRTA (A858D/WT), while compound heterozygotes (ΔV850/A858D) had dRTA. We found that the A858D mutant was slightly impaired in the endoplasmic reticulum (ER) exit but could target to the basolateral membrane of polarized MDCK cells. Despite an altered binding to an inhibitor affinity resin, anion transport assays showed that the A858D mutant was functional at the cell surface. The ΔV850 mutant showed altered binding to the affinity resin but was predominantly retained in the ER, resulting in undetectable AE1 expression at the basolateral membrane. When coexpressed in MDCK cells, the WT protein, and to a lesser extent the A858D mutant, enhanced the cell surface expression of the ΔV850 mutant. The ΔV850 mutant also affected the cell surface expression of the A858D mutant. Compound heterozygous (A858D/ΔV850) patients likely possess a decreased amount of functional anion exchangers at the basolateral membrane of their α-intercalated cells, resulting in impaired bicarbonate transport into the blood and defective acid transport into the urine.

Related Organizations
Keywords

Heterozygote, Cell Polarity, Gene Expression, Membrane Proteins, Epithelial Cells, Genes, Recessive, Acidosis, Renal Tubular, Cell Line, Protein Transport, Dogs, Anion Exchange Protein 1, Erythrocyte, Stilbenes, Animals, Humans, Point Mutation, Kidney Tubules, Distal, Anion Exchange Resins, Genes, Dominant, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Average
Top 10%