Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Allergy a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Allergy and Clinical Immunology
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Requirements for allergen-induced airway inflammation and hyperreactivity in CD4-deficient and CD4-sufficient HLA-DQ transgenic mice

Authors: Michele K. Smart; Eric V. Marietta; Svetlana P. Chapoval; Chella S. David;

Requirements for allergen-induced airway inflammation and hyperreactivity in CD4-deficient and CD4-sufficient HLA-DQ transgenic mice

Abstract

Airway inflammation is central to the pathogenesis of allergic asthma, and molecules that mediate this process obviously represent targets for therapy.To study the role of CD4(+) T cells and/or HLA-DQ molecules in allergic asthma, we have generated and characterized models of short ragweed allergen (SRW)-induced inflammation using transgenic mice with HLA-DQ (DQ6 or DQ8), human CD4 (hCD4), or both on a genetic background that lacks mouse MHC II and CD4 (Abeta(0)/mCD4(0)).Mice were actively sensitized and later challenged intranasally with SRW allergenic extract. Bronchoalveolar lavage fluid composition, airway inflammation and hyperresponsiveness, blood eosinophil levels, and cell proliferation were examined.In response to SRW treatment, both DQ6 and DQ8 transgenic mice expressing hCD4 developed pulmonary eosinophilia and associated lung tissue damage with increase in eosinophil peroxidase and T(H)2 cytokines in bronchoalveolar lavage fluid, strong airway hyperreactivity, and persistent blood eosinophilia. The response was independent of mast cells/histamine pathway and was mediated by DQ-restricted hCD4(+) T cells. Interestingly, lungs of CD4-deficient DQ6 transgenic mice showed an eosinophilic inflammation without local increase in cytokines and eosinophil peroxidase. The allergic reaction was absent in double-knockout mice and mice expressing either DQ8 or hCD4 alone.DQ6 molecules are critical to SRW-induced allergy and can operate in the presence or absence of CD4. However, both DQ antigens and CD4 molecules are critical for full manifestation of allergen-induced asthma in transgenic mice.

Related Organizations
Keywords

CD4-Positive T-Lymphocytes, Mice, Knockout, Antibodies, Monoclonal, Mice, Transgenic, Allergens, Immunoglobulin E, Lymphocyte Activation, Asthma, Mice, HLA-DQ Antigens, CD4 Antigens, Animals, Pollen, Mast Cells, Bronchial Hyperreactivity, Pulmonary Eosinophilia, Bronchoalveolar Lavage Fluid, Lung, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average