Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2001 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature
Article . 2001
versions View all 2 versions

Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms

Authors: V Q, Nguyen; C, Co; J J, Li;

Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms

Abstract

The stable propagation of genetic information requires that the entire genome of an organism be faithfully replicated once and only once each cell cycle. In eukaryotes, this replication is initiated at hundreds to thousands of replication origins distributed over the genome, each of which must be prohibited from re-initiating DNA replication within every cell cycle. How cells prevent re-initiation has been a long-standing question in cell biology. In several eukaryotes, cyclin-dependent kinases (CDKs) have been implicated in promoting the block to re-initiation, but exactly how they perform this function is unclear. Here we show that B-type CDKs in Saccharomyces cerevisiae prevent re-initiation through multiple overlapping mechanisms, including phosphorylation of the origin recognition complex (ORC), downregulation of Cdc6 activity, and nuclear exclusion of the Mcm2-7 complex. Only when all three inhibitory pathways are disrupted do origins re-initiate DNA replication in G2/M cells. These studies show that each of these three independent mechanisms of regulation is functionally important.

Related Organizations
Keywords

DNA Replication, Saccharomyces cerevisiae Proteins, Chromosomal Proteins, Non-Histone, Cell Cycle, Origin Recognition Complex, Nuclear Proteins, Cell Cycle Proteins, Replication Origin, Saccharomyces cerevisiae, Minichromosome Maintenance Complex Component 7, DNA-Binding Proteins, Fungal Proteins, Repressor Proteins, Mutation, Phosphorylation, DNA, Fungal, CDC28 Protein Kinase, S cerevisiae

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    410
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
410
Top 1%
Top 1%
Top 0.1%