Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Carcinogenesisarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Carcinogenesis
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Carcinogenesis
Article . 2003 . Peer-reviewed
Data sources: Crossref
Carcinogenesis
Article . 2004
versions View all 4 versions

The effects of diet on DNA bulky adduct levels are strongly modified by GSTM1 genotype: a study on 634 subjects

Authors: PALLI D; MASALA G; PELUSO M; GASPARI L; KROGH V; MUNNIA A; PANICO, SALVATORE; +4 Authors

The effects of diet on DNA bulky adduct levels are strongly modified by GSTM1 genotype: a study on 634 subjects

Abstract

Frequent consumption of fresh fruit and vegetables, and polymorphisms in the detoxifying enzyme glutathione S-transferase M1 (GSTM1) and other metabolic genes have been shown to modulate cancer risk at some sites. We have shown recently that DNA adducts, a reliable indicator of genotoxic damage and, possibly, of cancer risk, are modulated by plasma levels of selected micronutrients. Here we further investigate the association between DNA adduct levels and consumption of major food groups and foods, and the estimated dietary intake of nutrients, taking into account the possible modifying effect of metabolic polymorphisms, in a larger sample of 634 healthy adults enrolled in a prospective study in Italy. DNA adducts and five polymorphic metabolic genotypes (GSTM1, GSTT1, NAT2, CYP1A1 and MTHFR) were determined in peripheral leukocytes by using 32P-postlabeling technique and PCR methods. DNA bulky adducts (mean: 7.82 +/- 0.40/10(9) nt) were detected in 482/634 samples (76.0%). Overall, DNA adduct levels were significantly and inversely associated with the intake of raw leafy vegetables (P = 0.02), non-citrus fruits (P = 0.04), potassium (P = 0.01) and beta-carotene (P = 0.05). No association was evident with the five genotypes. Stratification by GSTM1 genotype showed strong inverse associations of DNA adduct levels with increasing consumption of all vegetables combined (P = 0.04), leafy vegetables (P = 0.004), raw leafy vegetables (P = 0.002) and fish (P = 0.03) among 307 GSTM1-null subjects; strong inverse associations also emerged with estimated dietary intakes of beta-carotene (P = 0.004), vitamin E (P = 0.004), niacin (P = 0.02) and potassium (P = 0.01). In contrast, no association emerged among 295 subjects with a GSTM1-wild genotype. Overall, statistically significant interactions in predicting DNA adduct levels were observed between the GSTM1-null genotype and consumption of leafy vegetables (P = 0.01), white meat (P = 0.04), and intake of vitamin C (P = 0.04), vitamin E (P = 0.05) and beta-carotene (P = 0.02). Our results suggest that the role of a diet rich in antioxidants in preventing or reducing DNA adduct formation is restricted to subjects lacking the detoxifying activity of GSTM1 isoenzyme (approximately 50% of the general population).

Keywords

Adult, Male, Base Sequence, Genotype, Smoking, Middle Aged, Antioxidants, Body Mass Index, Diet, DNA Adducts, Italy, Reference Values, Risk Factors, Neoplasms, Humans, Female, Serum Albumin, DNA Primers, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 10%
bronze