Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Peptide S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Peptide Science
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The structure of S100A11 fragment explains a local structural change induced by phosphorylation

Authors: Makoto Demura; Tomoyasu Aizawa; Masakiyo Sakaguchi; Takahide Kouno; Mineyuki Mizuguchi; Nam Ho Huh; Hiroyuki Shinoda; +3 Authors

The structure of S100A11 fragment explains a local structural change induced by phosphorylation

Abstract

AbstractS100A11 protein is a member of the S100 family containing two EF‐hand motifs. It undergoes phophorylation on residue T10 after cell stimulation such as an increase in Ca2+ concentration. Phosphorylated S100A11 can be recognized by its target protein, nucleolin. Although S100A11 is initially expressed in the cytoplasm, it is transported to the nucleus by the action of nucleolin. In the nucleus, S100A11 suppresses the growth of keratinocytes through p21CIP1/WAF1 activation and induces cell differentiation. Interestingly, the N‐terminal fragment of S100A11 has the same activity as the full‐length protein; i.e. it is phosphorylated in vivo and binds to nucleolin. In addition, this fragment leads to the arrest of cultured keratinocyte growth. We examined the solution structure of this fragment peptide and explored its structural properties before and after phosphorylation. In a trifluoroethanol solution, the peptide adopts the α‐helical structure just as the corresponding region of the full‐length S100A11. Phosphorylation induces a disruption of the N‐capping conformation of the α‐helix, and has a tendency to perturb its surrounding structure. Therefore, the phosphorylated threonine lies in the N‐terminal edge of the α‐helix. This local structural change can reasonably explain why the phosphorylation of a residue that is initially buried in the interior of protein allows it to be recognized by the binding partner. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.

Keywords

Nucleolin, Molecular Sequence Data, S100 Proteins, RNA-Binding Proteins, Cell Differentiation, Phosphoproteins, Peptide Fragments, Protein Structure, Secondary, Protein Transport, Structure-Activity Relationship, Humans, Amino Acid Sequence, EF Hand Motifs, Phosphorylation, Dimerization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average