Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Biochemistry an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Biochemistry and Biophysics
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Computational Identification of Pathogenic Associated nsSNPs and its Structural Impact in UROD Gene: A Molecular Dynamics Approach

Authors: C George Priya, Doss; R, Magesh;

Computational Identification of Pathogenic Associated nsSNPs and its Structural Impact in UROD Gene: A Molecular Dynamics Approach

Abstract

Uroporphyrinogen decarboxylase is a cytosolic enzyme involved in the biosynthetic pathway of heme production. Decreased activity of this enzyme results in porphyria cutanea tarda and hepato erythropoietic porphyria. Nonsynonymous single nucleotide polymorphisms (nsSNPs) alter protein sequence and can cause disease. Identifying the deleterious nsSNPs that contribute to disease is an important task. We used five different in silico tools namely SIFT, PANTHER, PolyPhen2, SNPs&GO, and I-mutant3 to identify deleterious nsSNPs in UROD gene. Further, we used molecular dynamic (MD) approach to evaluate the impact of deleterious mutations on UROD protein structure. By comparing the results of all the five prediction results, we screened 35 (51.47 %) nsSNPs as highly deleterious. MD analysis results show that all the three L161Q, L282R, and I334T deleterious variants were affecting the UROD protein structural stability and flexibility. Our findings provide strong evidence on the effect of deleterious nsSNPs in UROD gene. A detailed MD study provides a new insight in the conformational changes occurred in the mutant structures of UROD protein.

Keywords

Static Electricity, Hydrogen Bonding, Molecular Dynamics Simulation, Polymorphism, Single Nucleotide, Protein Structure, Secondary, Enzyme Stability, Mutation, Humans, Uroporphyrinogen Decarboxylase, Disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average