The tenascin gene family in axon growth and guidance
pmid: 9321695
The tenascin gene family in axon growth and guidance
Glial cells are thought to play an important role in the regulation of neural pattern formation, e.g. by guiding migrating neuroblasts and growth cones to their target regions. In addition to these supportive roles, astro- and oligodendroglia have also been attributed inhibitory functions. Thus, these lineages are believed to constrain the pathways of migrating neurons and growth cones. Recent studies have led to the current view that the inhibitory roles of the glia of the central nervous system (CNS) may be important for neural pattern formation. Furthermore, inhibitory effects of glia may play an essential role in the failure of CNS regeneration, e.g. in the astrocytic scar. Advances have been made in deciphering the molecular basis of glia-mediated inhibitory influences in the CNS. The present review focuses on the tenascin gene family of extracellular matrix glycoproteins. Of these, tenascin-C and -R are expressed in developing and lesioned neural tissue and embody both stimulatory and anti-adhesive or inhibitory properties for axon growth.
- Heidelberg University Germany
Central Nervous System, Neurons, Cell Movement, Animals, Gene Expression Regulation, Developmental, Humans, Tenascin, Cell Communication, Neuroglia, Signal Transduction
Central Nervous System, Neurons, Cell Movement, Animals, Gene Expression Regulation, Developmental, Humans, Tenascin, Cell Communication, Neuroglia, Signal Transduction
12 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).149 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
