Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Regulation of tyrosine hydroxylase gene transcription by Sry

Authors: Amy, Milsted; Lidia, Serova; Esther L, Sabban; Gail, Dunphy; Monte E, Turner; Daniel L, Ely;

Regulation of tyrosine hydroxylase gene transcription by Sry

Abstract

Testes determining factor Sry is encoded by the Sry locus on the Y chromosome and may be involved in the regulation of blood pressure. Here we tested the hypothesis that Sry regulates transcription of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines. Sry was found to be expressed in catecholaminergic regions, in male but not female rats. Co-transfection of PC12 cells with expression vector for Sry and the reporter construct [p5'TH(-773/+27)/Luc], containing 773 of the proximal nucleotides of the TH promoter directing luciferase reporter activity, led to elevation of reporter activity. The reporter activity of a shorter construct [p5'TH(-272/+27)/Luc] lacking putative Sry sites also responded to Sry. However, mutation of the AP1 site in the TH promoter greatly reduced induction by Sry, indicating that the regulation is primarily at this motif. The remaining, significantly increased expression with the mutated TH promoter construct may reflect Sry function at other sites in addition to the AP1 motif. These results reveal that Sry can regulate TH transcription and suggest that this may be one of the mechanisms of Sry mediated regulation of catecholamine biosynthesis in catecholaminergic neurons in males.

Related Organizations
Keywords

Male, Transcription, Genetic, Tyrosine 3-Monooxygenase, Reverse Transcriptase Polymerase Chain Reaction, Brain, Nuclear Proteins, Transfection, PC12 Cells, Sex-Determining Region Y Protein, Rats, DNA-Binding Proteins, Sex Factors, Gene Expression Regulation, Animals, Female, RNA, Messenger, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Average