Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2004 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2004 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2004
versions View all 3 versions

Interleukin 1? inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance

Authors: Eric, Assenat; Sabine, Gerbal-Chaloin; Dominique, Larrey; Jean, Saric; Jean-Michel, Fabre; Patrick, Maurel; Marie-José, Vilarem; +1 Authors

Interleukin 1? inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance

Abstract

During the inflammatory response, intrahepatic cholestasis and decreased drug metabolism are frequently observed. At the hepatic level, the orphan nuclear constitutive androstane receptor (CAR) (NR1I3) controls phase I (cytochrome P450 [CYP] 2B and CYP3A), phase II (UGT1A1), and transporter (SLC21A6, MRP2) genes involved in drug metabolism and bilirubin clearance in response to xenobiotics such as phenobarbital or endobiotics such as bilirubin. We investigated the negative regulation of CAR, a glucocorticoid-responsive gene, via proinflammatory cytokine interleukin 1beta (IL-1beta) and lipopolysaccharides (LPSs) in human hepatocytes. We show that IL-1beta decreases CAR expression and decreases phenobarbital- or bilirubin-mediated induction of CYP2B6, CYP2C9, CYP3A4, UGT1A1, GSTA1, GSTA2, and SLC21A6 messenger RNA. This occurs via nuclear factor kappaB (NF-kappaB) p65 activation, which interferes with the enhancer function of the distal glucocorticoid response element that we have identified recently in the CAR promoter. We demonstrate that: (1) LPSs, IL-1beta, or overexpression of p65RelA inhibit glucocorticoid receptor (GR)-mediated CAR transactivation; (2) these suppressive effects can be blocked both by pyrrolidine dithiocarbamate, an inhibitor of NF-kappaB activation, or by overexpression of SRIkBalpha, a NF-kappaB repressor; and (3) the GR agonist dexamethasone induces histone H4 acetylation at the proximal CAR promoter region, whereas LPSs and IL-1beta inhibit this acetylation as assessed via chromatin immunoprecipitation assay. In conclusion, GR/NF-kappaB interaction affects CAR gene transcription through chromatin remodeling and provide a mechanistic explanation for the long-standing observation that inflammation and sepsis inhibit drug metabolism while inducing intrahepatic cholestasis or hyperbilirubinemia.

Keywords

Lipopolysaccharides, Carcinoma, Hepatocellular, NF-kappa B, Transcription Factor RelA, Gene Expression, Receptors, Cytoplasmic and Nuclear, Acetylation, Bilirubin, Histones, Liver, Hepatocytes, Humans, Pharmacokinetics, Promoter Regions, Genetic, Glucocorticoids, Constitutive Androstane Receptor, HeLa Cells, Interleukin-1, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 10%
Top 10%
Top 10%
bronze