Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hepatologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hepatology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hepatology
Article . 2010 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Hepatology
Article . 2010 . Peer-reviewed
Data sources: Crossref
Hepatology
Article . 2010
versions View all 3 versions

Cx3Cr1 and Vascular Adhesion Protein-1-Dependent Recruitment of Cd16+ Monocytes Across Human Liver Sinusoidal Endothelium

Authors: Alexander I, Aspinall; Stuart M, Curbishley; Patricia F, Lalor; Chris J, Weston; Miroslava, Blahova; Evaggelia, Liaskou; Rebecca M, Adams; +2 Authors

Cx3Cr1 and Vascular Adhesion Protein-1-Dependent Recruitment of Cd16+ Monocytes Across Human Liver Sinusoidal Endothelium

Abstract

The liver contains macrophages and myeloid dendritic cells (mDCs) that are critical for the regulation of hepatic inflammation. Most hepatic macrophages and mDCs are derived from monocytes recruited from the blood through poorly understood interactions with hepatic sinusoidal endothelial cells (HSECs). Human CD16+ monocytes are thought to contain the precursor populations for tissue macrophages and mDCs. We report that CD16+ cells localize to areas of active inflammation and fibrosis in chronic inflammatory liver disease and that a unique combination of cell surface receptors promotes the transendothelial migration of CD16+ monocytes through human HSECs under physiological flow. CX3CR1 activation was the dominant pertussis-sensitive mechanism controlling transendothelial migration under flow, and expression of the CX3CR1 ligand CX3CL1 is increased on hepatic sinusoids in chronic inflammatory liver disease. Exposure of CD16+ monocytes to immobilized purified CX3CL1 triggered β1-integrin-mediated adhesion to vascular cell adhesion molecule-1 and induced the development of a migratory phenotype. Following transmigration or exposure to soluble CX3CL1, CD16+ monocytes rapidly but transiently lost expression of CX3CR1. Adhesion and transmigration across HSECs under flow was also dependent on vascular adhesion protein-1 (VAP-1) on the HSECs. Conclusion : Our data suggest that CD16+ monocytes are recruited by a combination of adhesive signals involving VAP-1 and CX3CR1 mediated integrin-activation. Thus a novel combination of surface molecules, including VAP-1 and CX3CL1 promotes the recruitment of CD16+ monocytes to the liver, allowing them to localize at sites of chronic inflammation and fibrosis. (Hepatology 2010)

Keywords

Chemokine CX3CL1, Liver Diseases, Receptors, IgG, CX3C Chemokine Receptor 1, Down-Regulation, Endothelial Cells, Vascular Cell Adhesion Molecule-1, GPI-Linked Proteins, Monocytes, Phenotype, Liver, Cell Movement, Cell Adhesion, Humans, Receptors, Chemokine, Amine Oxidase (Copper-Containing), Endothelium, Cell Adhesion Molecules

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
bronze