Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.5451/uni...
Other literature type . 2005
Data sources: Datacite
versions View all 3 versions

Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering

Authors: Madhavan, R.; Zhao, X. T.; Ruegg, M. A.; Peng, H. B.;

Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering

Abstract

During vertebrate neuromuscular junction (NMJ) development, nerve-secreted agrin induces acetylcholine receptor (AChR) clustering in muscle by activating the muscle-specific tyrosine kinase MuSK. Recently, it has been recognized that MuSK activation-dependent AChR clustering occurs in embryonic muscle even in the absence of agrin, but how this process is regulated is poorly understood. We report that inhibition of tyrosine phosphatases in cultured C2 mouse myotubes using pervanadate enhanced MuSK auto-activation and agrin-independent AChR clustering. Moreover, phosphatase inhibition also enlarged the AChR clusters induced by agrin in these cells. Conversely, in situ activation of MuSK in cultured Xenopus embryonic muscle cells, either focally by anti-MuSK antibody-coated beads or globally by agrin, stimulated downstream tyrosine phosphatases, which could be blocked by pervanadate treatment. Immunoscreening identified Shp2 as a major tyrosine phosphatase in C2 myotubes and down-regulation of its expression by RNA interference alleviated tyrosine phosphatase suppression of MuSK activation. Significantly, depletion of Shp2 increased both agrin-independent and agrin-dependent AChR clustering in myotubes. Our results suggest that muscle tyrosine phosphatases tightly regulate MuSK activation and signaling and support a novel role of Shp2 in MuSK-dependent AChR clustering.

Related Organizations
Keywords

571, Pervanadate, Xenopus, Muscle Fibers, Skeletal, Neuromuscular Junction, Down-Regulation, Protein Tyrosine Phosphatase, Non-Receptor Type 11, Development, Signal transduction, Synaptic Transmission, Mice, RNA-mediated interference, Animals, Receptors, Cholinergic, Agrin, Enzyme Inhibitors, Muscle, Skeletal, Protein-tyrosine kinase, Receptor density, Cells, Cultured, Muscles, Receptor Aggregation, Intracellular Signaling Peptides and Proteins, Receptor Protein-Tyrosine Kinases, Myotubes, Protein-tyrosine-phosphatase, Neuromuscular junctions, Protein Tyrosine Phosphatases, Vanadates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Average
Top 10%
Top 10%