Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2014 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2014
versions View all 2 versions

LEF1 and B9L Shield β-Catenin from Inactivation by Axin, Desensitizing Colorectal Cancer Cells to Tankyrase Inhibitors

Authors: Marc, de la Roche; Ashraf E K, Ibrahim; Juliusz, Mieszczanek; Mariann, Bienz;

LEF1 and B9L Shield β-Catenin from Inactivation by Axin, Desensitizing Colorectal Cancer Cells to Tankyrase Inhibitors

Abstract

Abstract Hyperactive β-catenin drives colorectal cancer, yet inhibiting its activity remains a formidable challenge. Interest is mounting in tankyrase inhibitors (TNKSi), which destabilize β-catenin through stabilizing Axin. Here, we confirm that TNKSi inhibit Wnt-induced transcription, similarly to carnosate, which reduces the transcriptional activity of β-catenin by blocking its binding to BCL9, and attenuates intestinal tumors in ApcMin mice. By contrast, β-catenin's activity is unresponsive to TNKSi in colorectal cancer cells and in cells after prolonged Wnt stimulation. This TNKSi insensitivity is conferred by β-catenin's association with LEF1 and BCL9-2/B9L, which accumulate during Wnt stimulation, thereby providing a feed-forward loop that converts transient into chronic β-catenin signaling. This limits the therapeutic value of TNKSi in colorectal carcinomas, most of which express high LEF1 levels. Our study provides proof-of-concept that the successful inhibition of oncogenic β-catenin in colorectal cancer requires the targeting of its interaction with LEF1 and/or BCL9/B9L, as exemplified by carnosate. Cancer Res; 74(5); 1495–505. ©2014 AACR.

Related Organizations
Keywords

Tankyrases, Transcription, Genetic, Lymphoid Enhancer-Binding Factor 1, HCT116 Cells, Cell Line, DNA-Binding Proteins, Mice, Inbred C57BL, Wnt Proteins, Mice, HEK293 Cells, Axin Protein, Cell Line, Tumor, Animals, Humans, Colorectal Neoplasms, beta Catenin, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 1%
bronze
Related to Research communities
Cancer Research